پیاده‌سازی سخت‌افزاری حل عددی معادلات دیفرانسیل روی F‌P‌G‌A

Authors

  • ایوب نیکروان شلمانی پژوهشکده‌ی مکانیک، سازمان پژوهش‌های علمی و صنعتی ایران
  • فؤاد فرحانی بغلانی پژوهشکده‌ی مکانیک، سازمان پژوهش‌های علمی و صنعتی ایران
Abstract:

حل عددی معادلات دیفرانسیل با استفاده از بسترهای C‌P‌U و G‌P‌U مبتنی بر پیاده‌سازی نرم‌افزاری است. در سال‌های اخیر، راهکار جدیدی مبتنی بر پیاده‌سازی سخت‌افزاری معادلات با استفاده از بستر F‌P‌G‌A، به‌دلیل افزایش سرعت حل و کاهش توان مصرفی، مورد توجه جدی قرار گرفته است. در این پژوهش با حل چند مسئله‌ی نوعی، شامل سیستم جرم و فنر و معادله‌ی موج، روش پیاده‌سازی سخت‌افزاری برای حل معادلات دیفرانسیل بر روی F‌P‌G‌A، مزایا و چالش‌های این پیاده‌سازی و روش‌های حل آن ارائه شده است. نتایج سرعت پردازش برای حل سیستم تک جرم و فنر نشان می‌دهد که سرعت C‌P‌U تقریباً برابر F‌P‌G‌A است ولی برای سیستم ۶ جرم و فنر سرعت F‌P‌G‌A ۸ برابر C‌P‌U است. همچنین نتایج سرعت پردازش حل معادله‌ی موج نشان‌دهنده‌ی افزایش ۳٫۶ برابری سرعت F‌P‌G‌A نسبت به C‌P‌U است. این نتایج نشان‌گر افزایش کارایی F‌P‌G‌A با افزایش تعداد المان‌های محاسباتی است.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

حل عددی معادلات دیفرانسیل معمولی کسری با روش گالرکین ناپیوسته موضعی

در این مقاله، روش گالرکین ناپیوسته‌ی موضعی برای حل معادلات دیفرانسیل معمولی با مرتبه‌ی کسری را در حالت کلی به کار می‌بریم.  در این روش انتخاب (طبیعی) شار عددی آپویند، ما را قادر می‌سازد تا مسائل مقدار اولیه برای معادلات کسری معمولی را به صورت بازه به بازه و پیشرو در زمان حل کنیم. این بدین معنی است که ما بایستی در هر زیربازه به حل یک دستگاه معادلات از مرتبه پایین $(k+1)times (k+1)$...

full text

حل معادلات دیفرانسیل و انتگرال با توابع والش

هر شکل موج متناوب و مناسب را می توان بصورت یک سری از توابع والش بیان کرد . اگر سری در انتهای گروهی از جملات با مرتبه معیین قطع گردد جمع جزئی جمل تقریب پلکانی شکل موج خواهد بود ، بلندی هر پله مساوی مقدار متوسط شکل موج در همان فاصله خواهد بود . اگر یک تبدیل غیر خطی حافظ صفر به یک سری والش اعمال گردد ، سری حاصل را می توان با اعمال جبری ساده بدست آورد . ضرایب سری اولیه تغییر خواهد کرد اما جمله ها...

full text

حل عددی معادلات دیفرانسیل تصادفی

در این رساله ابتدا مقدماتی از معادلات دیفرانسیل تصادفی و حسابان تصادفی را خواهیم دید و سپس در مورد نتایج اساسی استخراج شده بحث خواهیم کرد.اساسی ترین نتایج این رساله عبارتند از :تعمیم روشهای رانگ - کوتای صریح برای حل عددی معادلات دیفرانسیل تصادفی که در سال 1996 توسط ‏‎k.burrage‎‏ و ‏‎p.m.burrage‎‏ استخراج شده بودند در واقع در این رساله با استفاده از نظریه درختان ریشه دار و تعمیم آنها به حالت تصا...

15 صفحه اول

حل عددی معادلات انتگرال-دیفرانسیل فردهلم-ولترای-همرشتاین غیرخطی با استفاده از توابع بسل

در این مقاله، روش هم محلی بر پایه چندجمله ای های بسل را برای حل معادلات انتگرال-دیفرانسیل فردهلم-ولترا-همرشتاین غیرخطی با شرایط آمیخته به کار می بریم. در این روش، معادلات انتگرال- دیفرانسیل فردهلم- ولترای- همرشتاین غیرخطی با به کارگیری چند جمله ای های بسل نوع اول و نقاط گره ای تبدیل به معادله ای ماتریسی می شود. معادله ماتریسی متناظربا یک دستگاه معادلات غیرخطی جبری با ضرایب نامعلوم  بسل  است. نت...

full text

حل عددی معادلات دیفرانسیل تصادفی

حل عددی مسائل دیفرانسیل معمولی یا جزئی خطی که در آن قسمتی از شرایط اولیه یا کرانه ای یا خود معادله تصادفی باشد از دیرباز مورد توجه پژوهشگران بوده است. تصادفی بودن بدین مفهوم است که وجود برخی اختلالات سبب تبدیل معادله از حالت معین شده ریاضی به تصادفی با ابعاد مختلف شود. مبنای حل این گونه معادلات، تکیه بر اصول خطی سازی و گسسته سازی مسأله است. در اکثر موارد قسمت تصادفی دارای ویژگی حرکت براونی اس...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 33.3  issue 1

pages  93- 99

publication date 2017-05-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023